Synthesis, Characterization and Biological Evaluation of Oxazolone Derivatives
M A Wasim Akram¹, S Lakshmi*, B Shankar², T Shivaraj Gouda³

Department of Pharmaceutical Chemistry, JPNES Group of Institutions, FOP Mahabubnagar-509001.
Manuscript No: IJPRS/V3/I2/00296, Received On: 07/06/2014, Accepted On: 18/06/2014

ABSTRACT
A series of six 4-aryl Benzylidene-2-phenyl-5- oxazolone derivatives were synthesized by condensation of aromatic aldehydes with N-benzoyl glycine in the presence of sodium acetate and acetic anhydride at room temperature in ethanol. Six of the compounds are new derivatives. The structures of the compounds were evaluated based on 1H-NMR and FT-IR spectroscopy, and elemental analysis. All the compounds were screened for their antibacterial activity. The antibacterial activity was tested by the agar well diffusion method using Mueller Hinton Agar medium. Compound (O₂) showed excellent activity against Staphylococcus aureus exhibiting 15mm (80 %) inhibition and above 10mm (70 %) against Bacillus subtilis. Compound (O₃) was the most active compound against Escherichia coli having 18mm (80 %) inhibition followed by compound (O₂) having above 14mm (70 %) inhibition.

KEYWORDS
N- Benzoyl Glycine, Aromatic Aldehyde, Oxazolones, Antibacterial Activities

INTRODUCTION
For many decades, increasing resistance against human pathogens that cause serious infections is one of the main topics of interest for medicinal chemists. Many medicines were developed against bacterial infections. Since many decades, active heterocyclic compounds are one of the main topics of interest for the medicinal chemists as it displays a number of pharmacological activities.

Mostly Nitrogen- Sulphur- and Oxygen-containing five- and six-member heterocyclic compounds like oxazolones have enormous significance in the field of medicinal chemistry and these are class of small heterocyclic compounds which have acquired more importance in recent years due to their pharmacological activities.

Oxazolones are five membered heterocyclic compounds containing nitrogen and oxygen as hetero atoms. The C-2 and C-4 positions of oxazolone are responsible for their various biological activities such as analgesic, anti-inflammatory, antidepressant, anticancer, antimicrobial, antidiabetic and antiobesity. Oxazol-5-ones contain correspondence numerous reactive sites allowing for a diverse set of possible modifications. Hence we aimed to design novel derivatives containing a variety of oxazolone derivatives with structural variation at C-2 and C-4 positions were synthesized and evaluated anti-microbial and analgesic activities.
MATERIALS AND METHODS

All the chemicals were of synthetic grade and commercially procured from SD fine Chemicals Ltd. Mumbai, India. Melting points were recorded on a Buchi capillary melting point apparatus and are uncorrected. IR spectra were recorded on FT-IR 8400S, Fourier Transform (SHIMADZU) Infrared spectrophotometer using KBr disc method. The 1H-NMR spectra were recorded in CDCl₃ on AVANCE 300MHZ NMR Spectrophotometer using TMS as an internal standard. Thin layer chromatography analyses were performed on pre-coated silica gel plates (G 350, Merck).

Procedure

Step 1: General Synthesis of Phenyl Glycine or Hippuric acid from Glycine

Glycine (10gm) is first dissolved in 10% sodium hydroxide solution (100ml) and reaction mixture is kept in ice cold water and benzoyl chloride (21.6ml) is added drop wise with continuous stirring after addition of all benzoyl chloride pH of the reaction mixture is adjusted to 2-3 with concentrated HCl and the precipitate of phenyl glycine obtained.

Step 2: Synthesis of Oxazolone Derivatives from Hippuric acid

Hippuric acid(0.01m), acetic anhydride(0.04m), sodium acetate(0.01m), aromatic aldehyde(0.04m), are taken in a conical flask and the reaction mixture is heated for 15mins on heating mantle then the reaction mixture is cooled for 5mins and 2-3 drops of ethanol is added and the ice cold water is poured into the reaction mixture to get the precipitate of oxazolones.

RESULTS AND DISCUSSION

Chemistry

Oxazolone derivatives were synthesized by condensation of substituted aromatic aldehydes with Hippuric acid using sodium acetate as a catalyst in ethanol at room temperature. The synthesized compounds were scaled for yield and purified by recrystallization with suitable solvent system. The purified compounds are identified/characterized by following methods melting point, solubility, thin layer chromatography and results were listed in table 1, the synthesized compounds were characterized using different spectroscopic techniques. The IR spectrum showed characteristic band of carbonyl group at 1772cm⁻¹ and C=N at 1352 cm⁻¹. 1H-NMR spectrum showed characteristic pattern of peaks. The methyl protons appeared in the region of
3.84 ppm, whereas the aromatic protons appeared at 6.89–8.12 ppm.

Antibacterial Activity

All the compounds O₁ to O₆ were tested for their antibacterial activity against *E. coli*, *B. subtilis*, *B. subtilis*, *S. aureus*, *P. aeruginosa*, and *K. pneumoniae*. The results were compared with those of the standard 0.5% Ciprofloxacin. The bacterial zones of inhibition values are summarized in Table. Compounds (O₂) and (O₃) showed excellent activities against *E. coli*, which is very difficult to treat with traditionally used antibiotics. The most active compound against *E. coli* was compound O₃ having 18 mm inhibition zone (80 % inhibition), followed by compound O₂ having above 15 mm inhibition zone (70 %). Thus, compounds O₂ and O₃ would be the better choice for the treatment of infections caused by *E. coli* than the derivatives 1, 4 or 5. All the screened compounds showed low to moderate activities against *P. aeruginosa*, except compound O₃ that showed 50 % inhibition. *S. aureus* is responsible for various throat infections and cholic diseases. Therefore, compound O₂ would be the best choice to treat infections caused by *S. aureus* as it had a 14 mm inhibition zone (60 %). Compound O₃ also showed 60 % inhibition followed by compounds 1, 2, 4, 5 and 6. The results of antibacterial activity are listed in table 2, compound O₂ and O₃ proved they to be very effective antibacterial agents.

Table 1: Physical Constants Data of Synthesized Compounds

<table>
<thead>
<tr>
<th>Compound Code</th>
<th>MP(C°)</th>
<th>% Yield</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
<th>Rf Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁</td>
<td>120</td>
<td>78%</td>
<td>C₁₆H₁₇NO₂</td>
<td>255.31</td>
<td>0.87</td>
</tr>
<tr>
<td>O₂</td>
<td>145</td>
<td>82%</td>
<td>C₁₅H₁₇NO₃</td>
<td>259.30</td>
<td>0.76</td>
</tr>
<tr>
<td>O₃</td>
<td>135</td>
<td>75%</td>
<td>C₁₅H₁₇NO₂</td>
<td>243.30</td>
<td>0.82</td>
</tr>
<tr>
<td>O₄</td>
<td>140</td>
<td>72%</td>
<td>C₁₆H₁₉NO₃</td>
<td>273.32</td>
<td>0.74</td>
</tr>
<tr>
<td>O₅</td>
<td>125</td>
<td>74%</td>
<td>C₁₄H₁₅NO₃</td>
<td>245.27</td>
<td>0.88</td>
</tr>
<tr>
<td>O₆</td>
<td>130</td>
<td>76%</td>
<td>C₂₁H₂₃NO₂</td>
<td>321.41</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Table 2: Antibacterial activity

<table>
<thead>
<tr>
<th>Compound code/ Name of bacteria</th>
<th>Mean zone of inhibition (mm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₁</td>
</tr>
<tr>
<td>E.coli</td>
<td>10</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>18</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>12</td>
</tr>
</tbody>
</table>

STD = Standard drug (0.5% Ciprofloxacin), O₁-O₆ = Synthesized derivatives (1% concentration of each compound)

Figure 2: Graphical representation of antibacterial activity

CONCLUSION

It is concluded based on the biological activities of the synthesized oxazolone derivatives, it could be concluded that they are therapeutically active antibacterial agents, among all synthesized compounds the compound O₂ and O₃ showed better antibacterial activity against Escherichia coli bacteria, compared with standard ciprofloxacin.

REFERENCES

dyes and an evaluation of their solvatochromic behaviour. *Arkivoc*, 14, 115-123.
