

International Journal for Pharmaceutical Research Scholars (IJPRS)

ISSN No: 2277 - 7873

RESEARCH ARTICLE

Preparation and Characterization of a Series of Narrative Pyrimidine Derivatives Vakhariya C¹, Ram H², Shah V³

¹Cadila Healthcare Ltd, Gujarat, India ²Tolani College of Arts & Science, Adipur (Kutch), Gujarat, India ³Department of Chemistry Saurashtra University, Rajkot, Gujarat, India. Manuscript No: IJPRS/V4/I4/00220, Received On: 04/12/2015, Accepted On: 12/12/2015

ABSTRACT

Synthesis of a series of *1,2,3,4-tetrahydro-4-(substitutedphenyl)-6-methyl-2-oxo-N-(pyridin-3-yl)pyrimidine-5-carboxamide (4a-h)* was achieved from different Aldehydes, N-(pyridin-3-yl)-3-oxobutanamide and urea using catalytical amount of concentrated hydrochloric acid in ethanol the product obtained was isolated and recrystallized from ethanol. So to the fine yield. The structures of the products were supported by FTIR, ¹H NMR and mass spectral data.

KEYWORDS

N-(Pyridin-3-yl)-3-Oxo-Butanamide, Aldehyde, Hydrochloric Acid and Urea Only Refluxed

INTRODUCTION

Heterocyclic nucleus imparts an important role in medicinal chemistry and serves as a key template for the development of various therapeutic agents. Synthetic studies of fused Pyrimidine have been reported extensively because of their structural diversity and association with a wide spectrum of biological activity.

It has been observed over the years that thiazole nucleus possess different biological activities such as antihypertensive¹, anti-inflammatory², anti-schizophrenic³, antibacterial⁴, anti-HIV⁵, hypnotic⁶, anti-allergic⁷ and more recently analgesic⁸, fibrinogen receptor antagonists with antithrombotic activity⁹.

Here few Fluoro Containing Pyrimidine Derivatives¹⁰ synthesis 4-(2-chloro-6fluorophenyl)-1,2,3,4-tetrahydro-6-isopropyl-Nphenyl)-2-thioxopyrimidine-5- carboxamide and this pyrimidine derivatives¹¹

*Address for Correspondence: Haresh Ram Tolani College of Arts & Science, Adipur (Kutch), Gujarat, India E-Mail Id: ram.haresh2007@gmail.com 1,2,3,4-Tetrahydropyrimidine (DHPM) calcium channel blockers are important class of drugs which induce relaxation of vascular smooth muscle, preferentially in arteries, and display a negative inotropic effect on isolated cardiac muscle¹².

They exert these effects by binding to a high affinity binding site in L-type voltage dependent Ca^{2+} channels¹³. So, this class of drug is effective in the treatment of hypertension, angina pectoris and other cardiovascular disorder¹⁴.

DHPMs may lead to other beneficial effects such as regression of left ventricular pressure and vascular hypertrophy, renal protection, weak anti-platelet, anti-ischemic and anti- atherogenic activity¹⁵⁻¹⁸.

We have urbanized a new etiquette for the synthesis 1,2,3,4-tetrahydro-4-(substituted-phenyl)-6-methyl-2-oxo-N-(pyridin-3-yl)pyrimi-dine-5-carboxamide (*4a-h*) with the advantage of fine yield and environmentally easiness (**Scheme-1**).

EXPERIMENTAL

Typical Experimental Procedure

A mixture of N-(pyridin-3-yl)-3-oxo-butanamide, appropriate aromatic aldehydes, urea and catalytical amount of concentrated hydrochloric acid in ethanol was heated under reflux condition for 8 to10 hrs. The reaction mixture was kept at room temperature for 24 hrs. The product obtained was isolated and recrystallized from ethanol.

1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-N-(pyridin-3-yl)pyrimidine-5-carboxamide (4a)

Yield: 66%; mp 160-162 °C; IR (cm⁻¹): 3331 (N-H stretching of primary amide), 3294 (N-H stretching of pyrimidine ring), 3059 (C-H symmetrical stretching of CH₃ group), 3024 (C-H stretching of aromatic ring), 2931 (C-H asymmetrical stretching of CH₃ group), 1699 (C=O stretching of amide), 1631 and 1525 (C=C stretching of aromatic ring), 1593 (N-H deformation of pyrimidine ring), 1460 (C-H asymmetrical deformation of CH₃ group), 1342 (C-H symmetrical deformation of CH₃ group), 1323 (C-N-C stretching of pyrimidine ring), 1282 (C-N stretching of pyrimidine ring), 1234 (C-H in plane deformation of aromatic ring), 759 and 713 (C-H out of plane deformation of mono substituted benzene ring); 1H NMR (DMSO-d6) δ ppm: 2.25 (s, 3H, Ha), 5.43 (s, 1H, Hb), 7.21-7.36 (m, 6H, Hcc'-f), 7.67 (s, 1H, Hg), 7.95-7.97 (d, 1H, Hh, J = 8.0 Hz), 8.20-8.21 (d, 1H, Hi, J = 4.0 Hz), 8.69 (s, 1H, Hk), 9.76 (s, 1H, Hl): m/z 308; Anal. Calcd. for C₁₇H₁₆N₄O₂: C, 66.22; H, 5.23; N, 18.17; O, 10.38. Found: C, 66.15; H, 5.20; N, 18.11; O, 10.30%.

1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3yl)-4-p-tolylpyrimidine-5-carboxamide (4b)

Yield: 64%; mp 191-193 °C; MS: m/z 322; IR (cm⁻¹): 3334 (N-H stretching of primary amide), 3290 (N-H stretching of pyrimidine ring), 3054 (C-H symmetrical stretching of CH₃ group), 3024 (C-H stretching of aromatic ring), 2931 (C-H asymmetrical stretching of CH₃ group), 1654 (C=O stretching of amide), 1630 and 1615 (C=C stretching of aromatic ring), 1590 (N-H deformation of pyrimidine ring), 1430 (C-H asymmetrical deformation of CH₃ group), 1332 (C-H symmetrical deformation of CH₃ group), 1303 (C-N-C stretching of pyrimidine ring), 1252 (C-N stretching of pyrimidine ring), 1235 (C-H in plane deformation of aromatic ring), 755 and 753 (C-H out of plane deformation of mono benzene ring); Anal. Calcd. substituted for C₁₈H₁₈N₄O₂: C, 67.07; H, 5.63; N, 17.38; O, 9.93. Found: C, 67.02; H, 5.59; N, 17.31, O, 9.90%.

1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6methyl-2-oxo-N-(pyridin-3-yl) pyrimidine-5carboxamide (4c)

Yield: 63%; mp 221-223 °C; IR (cm⁻¹): 3498 (N-H stretching of primary amide), 3230 (N-H stretching of pyrimidine ring), 3115 (C-H symmetrical stretching of CH₃ group), 2937 (C-H asymmetrical stretching of CH₃ group), 1712 (C=O stretching of amide), 1641 (N-H deformation of pyrimidine ring), 1525 and 1483 (C=C stretching of aromatic ring), 1435 (C-H asymmetrical deformation of CH₃ group), 1408 (C-N-C stretching of pyrimidine ring), 1340 (C-H symmetrical deformation of CH₃ group), 1276 (C-N stretching of pyrimidine ring), 1240 (Ph-O-C asymmetrical stretching of ether linkage), 1174 (C-H in plane deformation of aromatic ring), 1062 (Ph-O-C symmetrical stretching of ether linkage), 866 (C-H out of plane deformation of 1,4-disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.11 (s, 3H, Ha), 3.73 (s, 3H, Hb), 5.44 (s, 1H, Hc), 6.82-6.84 (d, 2H, Hdd', J = 8.0 Hz), 7.18-7.25 (m, 3H, He-g), 7.49 (s, 1H, Hh), 7.99-8.00 (d, 2H, Hii', J = 4.0 Hz), 8.17-8.18 (d, 1H, Hj, J = 4.0 Hz), 8.70 (s, 2H, Hkj), 9.60 (s, 1H, Hl); MS: m/z 338; Anal. Calcd. for

 $C_{18}H_{18}N_4O_3$: C, 63.89; H, 5.36; N, 16.56; O, 14.19. Found: C, 63.81; H, 5.30; N, 16.50; O, 14.11%.

4-(4-chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-2-oxo-N-(pyridin-3-yl) pyrimidine-5-carboxamide (4d)

Yield: 76%; mp 199-201 °C; MS: m/z 342; IR (cm⁻¹): 3344 (N-H stretching of primary amide), 3298 (N-H stretching of pyrimidine ring), 3056 (C-H symmetrical stretching of CH₃ group), 3024 (C-H stretching of aromatic ring), 2934 (C-H asymmetrical stretching of CH₃ group), 1664 (C=O stretching of amide), 1630 and 1616 (C=C stretching of aromatic ring), 1596 (N-H deformation of pyrimidine ring), 1436 (C-H asymmetrical deformation of CH₃ group), 1338 (C-H symmetrical deformation of CH₃ group), 1313 (C-N-C stretching of pyrimidine ring), 1264 (C-N stretching of pyrimidine ring), 1230 (C-H in plane deformation of aromatic ring), 982 (C-Cl stretching), 734 and 713 (C-H out of plane deformation of mono substituted benzene ring); Anal. Calcd. for C₁₇H₁₅ClN₄O₂: C, 59.57; H, 4.41; N, 16.34; O, 9.34. Found: C, 59.51; H, 4.35; N, 16.27; O, 9.25%.

4-(4-fluorophenyl)-1,2,3,4-tetrahy<mark>dro-6-methyl-</mark> 2-oxo-N-(pyridin-3-yl)pyrimidine-5-carboxamide (4e)

Yield: 80%; mp 198-200 °C; MS: m/z 326; IR (cm⁻¹): 3338 (N-H stretching of primary amide), 3220 (N-H stretching of pyrimidine ring), 3133 (C-H symmetrical stretching of CH₃ group), 2937 (C-H asymmetrical stretching of CH₃ group), 1735 (C=O stretching of amide), 1637 (N-H deformation of pyrimidine ring), 1483 (C=C stretching of aromatic ring), 1433 (C-H asymmetrical deformation of CH₃ group), 1419 (C-N-C stretching of pyrimidine ring), 1334 (C-H symmetrical deformation of CH₃ group), 1253 (C-N stretching of pyrimidine ring), 1230 (Ph-O-C asymmetrical stretching of ether linkage), 1173 (C-H in plane deformation of aromatic ring), 1064 (Ph-O-C symmetrical stretching of ether linkage), 1003 (C-F stretching), 860 (C-H out of plane deformation of 1,4-disubstitution); Anal. Calcd. for C₁₇H₁₅FN₄O₂: C, 62.57; H, 4.63; N, 17.17; O, 9.81. Found: C, 62.50; H, 4.57; N, 17.10; O, 9.75%.

1,2,3,4-tetrahydro-6-methyl-4-(4-nitrophenyl)-2oxo-N-(pyridin-3-yl) pyrimidine-5-carboxamide (4f)

Yield: 69%; mp 183-185 °C; IR (cm⁻¹): 3298 (N-H stretching of primary amide), 3234 (N-H stretching of pyrimidine ring), 3026 (C-H symmetrical stretching of CH₃ group), 2829 (C-H asymmetrical stretching of CH₃ group), 1689 (C=O stretching of amide), 1600 and 1471 (C=C stretching of aromatic ring), 1583 (C-NO₂ symmetrical stretching), 1521 (N-H deformation of pyrimidine ring), 1423 (C-N stretching of pyrimidine ring), 1390 (C-H asymmetrical deformation of CH₃ group), 1348 (C-N-C stretching of pyrimidine ring), 1309 (C-H symmetrical deformation of CH₃ group), 1244 (C-H in plane deformation of aromatic ring), 798 (C-H out of plane deformation of 1,4disubstitution); 1H NMR (DMSO-d6) δ ppm: 2.19 (s, 3H, Ha), 5.63 (s, 1H, Hb), 7.18-7.22 (m, 1H, Hc), 7.49 (s, 1H, Hd), 7.59-7.61 (d, 2H, Hee', J = 8.0 Hz), 8.01-8.03 (d, 1H, Hf, J = 8.0Hz), 8.14-8.16 (d, 2H, Hgg', J = 8.0 Hz), 8.23-8.24 (d, 1H, Hh, J = 4.0 Hz), 8.71-8.73 (d, 2H, Hii', J = 8.0 Hz, 9.60 (s, 1H, Hj); MS: m/z 353; Anal. Calcd. for C17H15N5O4: C, 57.79; H, 4.28; N, 19.82; O, 18.11. Found: C, 57.69; H, 4.20; N, 19.76; O, 18.04%.

1,2,3,4-tetrahydro-6-methyl-4-(3-nitrophenyl)-2-oxo-N-(pyridin-3-yl) pyrimidine-5-carboxamide (4g)

Yield: 65%; mp 192-194 °C; MS: m/z 353; IR (cm⁻¹): 3278 (N-H stretching of primary amide), 3244 (N-H stretching of pyrimidine ring), 3046 (C-H symmetrical stretching of CH₃ group), 2879 (C-H asymmetrical stretching of CH₃ group), 1699 (C=O stretching of amide), 1664 and 1471 (C=C stretching of aromatic ring), 1583 (C-NO₂ symmetrical stretching), 1521 (N-H deformation of pyrimidine ring), 1413 (C-N stretching of pyrimidine ring), 1365 (C-H asymmetrical deformation of CH₃ group), 1346 (C-N-C stretching of pyrimidine ring), 1300 (C-H symmetrical deformation of CH₃ group), 1243 (C-H in plane deformation of aromatic ring), 778 (C-H out of plane deformation of 1,4disubstitution); Anal. Calcd. for $C_{17}H_{15}N_5O_4$: C, 57.79; H, 4.28; N, 19.82; O, 18.11. Found: C, 57.71; H, 4.22; N, 19.78; O, 18.04%.

1,2,3,4-tetrahydro-6-methyl-4-(2-nitrophenyl)-2oxo-N-(pyridin-3-yl) pyrimidine-5-carboxamide (4h)

Yield: 79%; mp 226-228 °C; MS: *m/z* 353; IR (cm⁻¹): 3264 (N-H stretching of primary amide), 3264 (N-H stretching of pyrimidine ring), 3037 (C-H symmetrical stretching of CH₃ group), 2829 (C-H asymmetrical stretching of CH₃ group), 1680 (C=O stretching of amide), 1654 (C=C stretching of aromatic ring), 1581 (C-NO₂ symmetrical stretching), 1520 (N-H deformation of pyrimidine ring), 1420 (C-N stretching of pyrimidine ring), 1343 (C-H asymmetrical deformation of CH₃ group), 1341 (C-N-C stretching of pyrimidine ring), 1311 (C-H symmetrical deformation of CH₃ group), 1241 (C-H in plane deformation of aromatic ring), 791 (C-H out of plane deformation of 1,4disubstitution); Anal. Calcd. for C₁₇H₁₅N₅O₄: C. 57.79; H, 4.28; N, 19.82; O, 18.11. Found: C, 57.70; H, 4.23; N, 19.75; O, 18.00%.

CONCLUSION

In pinnacle, we contain synthesized of inventive pyrimidine derivatives using trouble-free and appropriate method. This method produces these products in first-class yields and trouble-free workup. Product is isolated by easy filtration. The isolated products are very pure and do not need any column purification. This study opens up a new area of beneficial synthesis of potentially biologically active narrative pyrimidine derivatives compounds.

REFERENCES

- 1. Patt, W. C., Hamilton, H. W., Taylor, M. D., & Ryan, M. (1992). *Journal of Medicinal Chemistry*, 35, 2562-72.
- Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C., & Pancholi, S. S. (2009). Synthesis of 4-benzyl-1, 3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design

approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(3), 890-897.

- Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., & Pugsley, T. A. (1990). 4-(1, 2, 5, 6-Tetrahydro-1-alkyl-3-pyridinyl)-2thiazolamines: A novel class of compounds with central dopamine agonist properties. *Journal of Medicinal Chemistry*, 33(1), 311-317.
- 4. Tsuji, K., & Ishikawa, H. (1994). Synthesis and anti-pseudomonal activity of new 2isocephems with a dihydroxypyridone moiety at C-7. *Bioorganic & Medicinal Chemistry Letters*, 4(13), 1601-1606.
- Bell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., & Oberg, B. (1995). Compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structureactivity relationship studies of PETT analogs. *Journal of Medicinal Chemistry*, 38, 4929-4936.
- Ergenc, N., Capan, G., Guenay, N. S., Oezkirimli, S., Guengoer, M., Oezbey, S., & Kendi, E. (1999). Synthesis and Hypnotic Activity of New 4-Thiazolidinone and 2-Thioxo-4, 5-imidazolidinedione Derivatives. Archiv der Pharmazie, 332(10), 343-347.
- Hargrave, K. D., Hess, F. K., & Oliver, J. T. (1983). N-(4-Substituted-thiazolyl) oxamic acid derivatives, new series of potent, orally active antiallergy agents. *Journal of Medicinal Chemistry*, 26(8), 1158-1163.
- Carter, J. S., Kramer, S., Talley, J. J., Penning, T., Collins, P., Graneto, M. J., & Zweifel, B. (1999). Synthesis and activity of sulfonamide-substituted 4, 5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. *Bioorganic & Medicinal Chemistry Letters*, 9(8), 1171-1174.
- Badorc, A., Bordes, M. F., de Cointet, P., Savi, P., Bernat, A., Lalé, A., & Herbert, J. M. (1997). New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists:

Identification of ethyl 3-[N-[4-[4-[amino [(ethoxycarbonyl) imino] methyl] phenyl]-1, 3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl) methyl] piperid-4-yl] amino] propionate (SR 121787) as a potent and long-acting antithrombotic agent. *Journal of Medicinal Chemistry*, 40(21), 3393-3401.

- Patel, K. N., Joshi, K. A., & Ram, H. K. (2015). Synthesis of Certain Fluoro Containing Pyrimidine Derivatives, *International Journal for Pharmaceutical Research Scholars*, 4(1), 210-214.
- Vora, J. H., Joshi, K. A., & Ram, H. K. (2015). New Contrive Protocol for Synthesis of Pyrimidine Derivatives, *International Journal for Pharmaceutical Research Scholars*, 4(1), 163-167.
- Edraki, N., Mehdipour, A. R., Khoshneviszadeh, M., & Miri, R. (2009). Dihydropyridines: evaluation of their currentand future pharmacological applications. *Drug Discovery Today*, 14(21), 1058-1066.
- Lin, M., Aladejebi, O., & Hockerman, G. H. (2011). Distinct properties of amlodipine and nicardipine block of the voltage-dependent Ca 2+ channels Ca v 1.2 and Ca v 2.1 and the mutant channels Ca v 1.2/Dihydropyridine insensitive and Ca v 2.1/Dihydropyridine sensitive. *European Journal of Pharmacology*, 670(1), 105-113.

- 14. Wang, J. G., Kario, K., Lau, T., Wei, Y. Q., Park, C. G., Kim, C. H., & Hu, D. (2011). Use of dihydropyridine calcium channel blockers in the management of hypertension in Eastern Asians: a scientific statement from the Asian Pacific Heart Association. *Hypertension Research*, 34(4), 423-430.
- Wenzel, R. R. (2005). Renal protection in hypertensive patients: selection of antihypertensive therapy. *Drugs*, 65(2), 29-39.
- Siller-Matula, J. M., Lang, I., Christ, G., & Jilma, B. (2008). Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. *Journal of the American College of Cardiology*, 52(19), 1557-1563.
- Si, H. Z., Wang, T., Zhang, K. J., De Hu, Z., & Fan, B. T. (2006). QSAR study of 1, 4dihydropyridine calcium channel antagonists based on gene expression programming. *Bioorganic & Medicinal Chemistry*, 14(14), 4834-4841.
- 18. El-Moselhy, T. F. (2013). Lipophilic 4imidazolyl-1, 4-dihydropyridines: synthesis, calcium channel antagonist activity and docking study. *Chemistry and Biology Interface*, *3*, 123-136.