

International Journal for Pharmaceutical Research Scholars (IJPRS)

V-7, I-3, 2018 ISSN: 2277 - 7873

RESEARCH ARTICLE

Ethnobotanical Survey of Medicinal Plants of Ramgarh Forest

Sankhadip Bose*, Sudipta Chakraborty

NSHM Knowledge Campus, Kolkata - Group of Institution, 124 B L Saha Road,

Kolkata 700053, West Bengal, India.

Manuscript No: IJPRS/V7/I3/00049, Received On: 16/07/2018, Accepted On: 23/07/2018

ABSTRACT

For thousands of years, healthful plants have vied a vital role throughout the globe in treating and preventing a spread of diseases. Social group folks in Ramgarh forest still rely upon healthful plants and most of them have knowledge of these plants that are used for aid remedies, to treat cough, cold, fever, headache, toxic bites and a few straightforward ailments. The current study was initiated with the aim to spot ancient healers which are active seasoning medication among the social groups in Ramgarh forest, Jhargram District, India and quantitatively documents their autochthonal information on the use of healthful plants significantly commonest ethnomedicinal plants. Field study was distributed over an amount of four months in Ramgarh forest. The ethnomedicinal data was collected through interviews among the native folks. The collected knowledge were analyzed through use worth (UV), informant agreement issue (Fic), fidelity level (FL) and relative importance (RI). A complete of sixty three species of plants distributed happiness to fifty two families were known as unremarkably used ethnomedicinal plants by the social group folks in Ramgarh forest. These disorders were classified into eighteen ailment classes supported the body systems treated. Leaves were the foremost parts used plant elements and most of the medicines were ready within the variety of paste and administered orally. Fic values of the current study indicated that there was a high agreement within the use of plants within the treatment of symptom and polygenic disease among the users.

KEYWORDS

Data Analysis, Folk Medicine, Ramgarh Tribal, Ramgarh Forest, Jhargram District

INTRODUCTION

According to the World Health Organization (WHO) regarding 65–80% of the world's population in developing countries depends basically on plants for his or her primary health care owing to impoverishment and lack of access to fashionable medicine.

*Address for Correspondence:

Dr. Sankhadip Bose

NSHM Knowledge Campus, Kolkata - Group of Institution, 124 B L Saha Road, Kolkata 700053, West Bengal, India. E mail ID: sankha.bose@gmail.com

In recent years, use of ethnobotanical data in medicative plant analysis has gained goodly attention in segments of the scientific community. Interest in medicative plants has been fuelled by the rising prices of medication prescribed (drugs/pharmaceuticals) within the maintenance of private health and wellbeing and also the bio prospecting of recent plant derived drugs.

Traditionally all medicative preparations were derived from plants, whether or not within the straight-forward sort of plant components or within a lot of complicated sort of crude extracts, mixtures, etc.

Primary advantages of victimisation plant medicines are that they derived are comparatively safer than artificial alternatives. providing profound therapeutic benefits and cheaper treatment. Regarding two years ago an accumulation was dominated by flavoring medicines and nearly twenty fifth of the medications prescribed worldwide return from plants. Of the 2.52. medication thought about as basic and essential are solely of plant origin and a variety are artificial medication obtained from natural precursors. Throughout the previous few decades there has been associate degree increasing interest within the study medicative plants their ancient use in and several components of Asian nation. Within the recent years variety of reports on the utilization of plants in ancient healing by either social group individuals or autochthonic communities of Asian nation is increasing. A few reports on ethnomedicinal uses of plants within the forests of Ramgarh and its connected areas were on the market and every one of these studies were conducted qualitatively with a lacuna in knowledge analysis.

The present study was initiated with associate degree aim to spot knowledgeable resource persons among the Ramgarh tribals in Jhargram district in West Bengal and quantitatively analyze their autochthonic ethnomedicinal data through numerous ethnobotanical tools on the employment of unremarkably used medicative plant¹⁻².

About The Place

Ramgarh is a village of Binpur-1 Block in Jhargram District of west Bengal state, India. It is located 53 KM towards north from Midnapore, 18 KM from Binpur and 157 KM from state capital Kolkata.

METHOD

Study Area and People

Ramgarh forest occupy Jhargram districts of West Bengal. The area is 43 hectares and lays 22.72871N latitude and 87.08628E line of longitude (Fig1).

The study was conducted in 5 villages of

Ramgarh forest that were settled by tribal every consisting of 5–56 families disbursed within the deep forest areas. The autochthonic individuals of the study space are Santali, the oldest cluster of the branch of group in West Bengal. They live preponderantly in and round the forest.

The Santals are a of the Austropart Asiatic family, distantly associated with Vietnamese and Khmer. The early Australoids are often known with some facial characteristics like low forehead, thick lips, wide jaw and wavy hair. Historians believe that they were the ancestors of the social group community residing within the Jap a part of Bharat (excluding hill portions). The Santal language, Santali, belongs to the Munda-Mon-Khmer (or Mundari) branch of the Austro-Asiatic language family. There are dialectical Santali. The most dialectical variations in distinction is between Northern Santali. which is spoken by the good majority of Santals, and Southern Santali. The latter is spoken within the southern a of province and in Orissa, whereas Northern Santali is spoken in most of province and in West Bengal³⁻⁴.

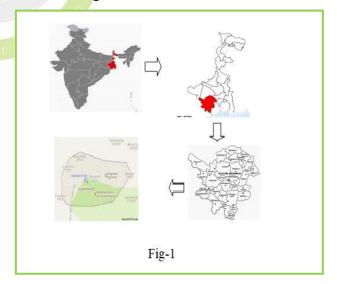


Figure 1: Geographical Map of Ramgarh Forest

Religions:

One of the foremost studied social group religions in Asian nation, the Santhal faith (Sari dharam) worships Marang

buru (God), or Bonga(God) , because the Supreme god, the load of belief, however, falls on a court of spirits (Bonga), placated with prayers and offerings so as to keep at bay evil influences. These spirits operate at the village, household, ancestor, and sub-clan level, at the side of evil spirits that cause unwellness and may inhabit village boundaries, mountains, water. tigers, and also the forest. Α characteristic feature of the Santhal village could be a sacred grove (known because the Jaher or "Santhal Sthal") on the sting of the settlement wherever several spirits live and wherever a series of annual festivals happen⁵.

Data Collection

The study space was investigated to urge information from social group practitioners and additionally to cross check the data provided by the opposite social group practitioners throughout the sooner visits. Throughout every field minimum survey a of ten days spent were with the native individuals in their social group hamlets. So document the employment | as to surveys healthful plants, field were administrated from August 2017 to Nov 2017 in Ramgarh forest. A total of twelve resource persons or informants or ancient healers were known to urge the ethnomedicinal information through direct interviews/oral conversations. They need sound data on healthful plants found in their encompassing areas and that they apply drugs among their families and neighbors. A field datasheet has been ready to record the plant details with ethno medicinal information gathered from the normal healers. Information on native name of lant, plant structure used for hardening, technique of preparation, the other plants/agents used as ingredients, modes of administration and were recorded for every collected ethnomedicinal plant⁶⁻⁸.

Ailment Categories

Based on the information obtained from the traditional healers in the study area, all the reported ailments were categorized into 18 categories viz. gastro-intestinal ailments (GIA),

dermatological infections/diseases (DID), respiratory systems diseases (RSD), genito-urinary ailments (GUA), fever (Fvr), skeleto-muscular system disorders (SMSD), poisonous bites (PB), circulatory system/ cardiovascular diseases (CSCD), endocrinal disorders (ED), skeletal Problem (SKL), dental care (DC), hair care (HC), ear, nose, throat problems (ENT), cooling agents (CA), anti diabetics (ABT), pain killer (PK), sexually transmitted diseases (STDs) and general health (GH). Several diseases were placed in one ailment category based on the body systems treated.

Data analysis

Informant Consensus Factor (Fic)⁹⁻¹⁰

The informant consensus factor (Fic) was used to see if there was agreement in the use of plants in the ailment categories between the plant users in the study area. The Fic was calculated using the following formula (Heinrich et al., 1998):

$$Fic = \frac{\text{Nur.Nt}}{\text{Nur.1}}$$

Where Nur refers to the number of use-reports for a particular ailment category and Nt refers to the number of taxa used for a particular ailment category by all informants. The product of this factor ranges from 0 to 1. A high value (close to 1.0) indicates that relatively few taxa are used by a large proportion of the informants. A low value indicates that the informants disagree on the taxa to be used in the treatment within a category of illness.

Use value (UV)¹¹

The relative importance of each plant species known locally to be used as herbal remedy is reported as use value (UV) and it was calculated using the following formula (Phillips et al., 1994):

$$UV = \frac{\sum U}{n}$$

Where UV is the use value of a species, U is the number of use reports cited by each informant for a given plant species and n is the total number of informants interviewed for a given plant. The UV is helpful in determining the plants with the highest use (most frequently indicated) in the treatment of an ailment. UVs are high when there are many use-reports for a plant and low when there are few reports related to its use.

Fidelity level (FL)¹²

To determine the most frequently used plant species for treating a particular ailment category by the informants of the study area, we have calculated the fidelity level (FL). The FL was calculated using the following formula (Friedmen et al., 1986):

$$FL(\%) = \frac{Np}{N} \times 100$$

Where Np is the number of use-reports cited for a given species for a particular ailment category and N is the total number of use reports cited for any given species. Generally, high FLs are obtained for plants for which almost all use-reports refer to the same way of using it, whereas low FLs are obtained for plants that are used for many different purposes (Srithi et al., 2009).

Relative importance (RI)¹³

We have calculated the relative importance (RI) of each medicinal plant based on the normalized number of pharmacological properties (PH) attributed to it and the normalized number of body systems (BS) it treated. Data on medicinal uses were organized according to the PH attributed to each taxon (e.g. analgesic, antiinflammatory etc.) and to the specific body systems treated (e.g. skin diseases, fever, asthma etc.). The RI was calculated using the following formula (Bennett and Prance, 2000):

$$RI = \frac{\text{RelPH} + \text{Rel BS}}{2} \times 100$$

Where RI is the relative importance, PH is the number of reported pharmacological properties for the given plant, RelPH is the relative number of pharmacological properties (PH of a given plant/maximum PH of all reported

species), BS is the number of body systems treated and Rel BS is the relative number of body systems treated (BS of a given plant/maximum BS of all reported species).

Preparation of Buffer: 0.01N Potassium dihydrogen ortho phosphate (pH 4.8)

Accurately weighed 1.36gm of Potassium dihyrogen ortho phosphate in a 1000ml of Volumetric flask add about 900ml of milli-Q water added and degas to sonicate and finally make up the volume with water the pH was adjusted to 4.8 with Orthophosphoric acid.

RESULTS AND DISCUSSION

Documentation of Indigenous Ethno Medicinal Knowledge

The present study unconcealed the employment of ninety species of plants distributed in eighty three genera happiness to fifty two families that were normally utilized by most TRIBALS for the treatment of sixty five kinds of ailments. The outstanding family was family followed Leguminosae with 9 species, asteroid dicot family and spurge family with six and 4 species severally. For every reportable species we tend to provide the biology name of the plant, family, voucher specimen variety, local name, life form, use value, parts used, ailments treated, methodology of preparation, mode of administration and relative importance (Table 1).

Life form and parts used

Herbs were the primary source of medicine (41%) followed by trees (57%), shrubs (27%), Herbs (11%) and climbers (5%) (Fig. 2). The frequent use of herbs among the indigenous communities is a result of wealth of herbaceous plants in their environs.

Among the various plant components used, the leaves (28%) were most often used for the preparation of drugs aloneor mixed with different plant components. It had been followed by fruit (10%), whole plant (7%), and flower (13%), stem (4%), seed (7%), latex (7%), root (10%), and young twig (4% each) (Fig. 3).

Table 1: List of commonly used medicinal plants by tribals in Ramgarh Forest, India

Botanical name	Family	Local name	Life form	Use value	Parts used	Ailment category: no. of use-reports (ailments treated)	Preparation	Application	RI
Shorea robusta	Dipterocarpaceae	Sal	Tree	0.63	Root	GIA: 3 (carminative) DID: 2 (skin disorders)	Juice	Oral	27.5
Mahua longifolia	Sapotaceae	Mol / Mohua	Tree	0.5	Leaf	DID: 4 (skin disorders)	Pest	Topical	40.0
Bambusoideae	Grasses	Bans	Tree	0.75	Leaf	GH: 2 (antioxidant) GUA: 4 (menstrual irregularities)	Juice	Oral	30.0
Acacia auriculiformis	Legumes	Akashmoni	Tree	0.5	Leaf	GH: 2 (contains tannin) SMSD: 2 (analgesic)	Decoction	Oral	25.0
Eucalyptus globulus	Myrtaceae	Eucalyptus	Tree	0.38	Leaf	GH:3 (analgesic)	Steam, Decoction	Oral	35.0
Vachellia nilotica	Legumes	Babla	Tree	0.75	Leaf	DC: 6 (Teeth cleaning)	Pest	Tooth powder	32.5
Ziziphus mauritiana	Rhamnaceae	Kul	Tree	0.88	Fruit, Leaf	CSCD: 3 GH: 2 (pain relieving) CA: 2 (COOLING AGENT)	Pest	Oral, Topical	57.5
Ficus racemosa	Moraceae	Dumur	Tree	0.5	Bark	PB: 4 (mosquito bites)	Pest	Topical	40.0
Bombax ceiba	Bombacaceae	Shimul	Tree	0.88	Root	STIs: 5 (White discharge)	Decoction	Oral	35.0

						GUA: 2 (diuretic)			
Phoenix dactylifera	Palm trees	Khejur	Tree	0.25	Root	GH: 2 (Anti-oxidant activity)	Juice	Oral	25.0
Borassus flabellifer	Palm trees	Tal	Tree	0.88	Root	STIs: 3 (Gonorrhea)	Juice	Oral	67.5
Neolamarckia cadamba	Rubiaceae	Kadam	Tree	0.5	Leaf	GH:4 (localized pain)	Paste	Topical	27.5
Holarrhena floribunda	Apocynaceae	Kurchi	Tree	0.88	Bark	GIA: 5 (Diarrhea) GH: 2 (Malaria)	Paste	Oral	67.5
Cleome gynandra	Capparaceae	velai	Shrub	0.75	Seed	PK: 6 (Pain Killer)	Powder	Oral	37.5
Tephrosia purpurea	Legumes	Jhangli nil	Shrub	0.75	Bark	GH: 3 (Anthelmintic, alexiteric) DID: 3 (Leprosy)	Juice	Oral	25.0
Diospyros melanoxylon	Ebenaceae	kendu	Tree	0.88	Leaf, Bark	GH: 2 (antimicrobial properties) DIT: 5 (antihyperglycemic)	Decoction, Juice	Oral	47.5
Terminalia bellirica	Combretaceae	Bahara	Tree	1.75	Flower, Seed	GIA: 5 (purgation) GH: 4 (various infections) HC: 5 (hair growth)	Pest, Powder	Oral, Topical	35.5
Cissus quadrangularis	Vitaceae	HardJod	Shrub	0.75	Stem	SKL; 6 (broken bones and injured ligaments and tendons)	Pest	Topical	40.0
Mimosa pudica	Legumes	Lojjaboti	Shrub	0.75	Young	PK : 3 (Anti Venom)	Decoction	Oral	35.0

					Twig	GIA: 3 (Pudica For Piles, Ulcers)			
Cassia fistula	Legumes	Sondal	Tree	1.0	Latex, Flower	GH: 4 (Tumor) GIA: 4 (Purgative)	Pest, Raw	Topical, Oral	22.5
Nyctanthes arbor-tristis	Oleaceae	Shiuli	Tree	0.75	Leaf	Fvr: 6 (Fever)	Juice	Oral	67.5
Solanum surattense	Solanaceae	Kontikari	Shrub	0.5	Young twig	RSD: 4 (bronchitis, cough)	Raw	Oral	32.5
Cactaceae	Cactaceae	Fonimonsa	Shrub	0.63	Whole plant	GH: 5 (construction materials)	Decoction	Oral	55.0
Euphobia neriifolia Linn	Euphorbiaceae	Monsa	Shrub	0.38	Whole plant	CA: 3 (pain and inflammation)	Pest	Topical	60.0
Enhydra fluctuans	Asteraceae	Hincha	Herb	0.88	Leaf	DID: 7 (Skin disease)	Juice	Oral	22.5
Ficus benghalensis	Moraceae	Bot	Tree	0.75	Root	PK: 6 (wound and swelling for quick relief)	Pest	Topical	37.5
Vitex negundo	Lamiaceae	Beguna/ Nisinda	Shrub	0.5	Latex	RSD: 4 (Cough)	Raw	Oral	67.5
Ipomoea carnea	Convolvulaceae	Kolmi	Herb	0.63	Whole plant	GIA: 3 (slightly purgative) DID: 2 (Skin problem)	Raw	Oral	15.0
Leucas aspera	Lamiaceae	Verenda/ Sombura	Shrub	0.63	Seed	GH: 5 (antioxidant, antimicrobial, antinociceptive and cytotoxic activities)	Powder	Oral	32.5
Albizia Lebbeck	Legumes	Shirish	Tree	0.88	Flower	STIs: 7 (infection in	Juice	Oral	32.5

						vagin)			
Annona squamosa	Annonaceae	Ata	Tree	0.63	Seed	CSCD: 5 (High b;ood pressure)	Powder	Oral	37.5
Dillenia indica	Dilleniaceae	Chalta	Tree	0.75	Bark	GIA: 3 (Laxative) RSD: 3 (used against coughs)	Juice	Oral	31.5
Spondias pinnata	Anacardiaceae	Amra	Tree	0.75	Root	ENT: 6 (against earache)	Pest	Topical	37.5
Hemidesmus Indicus	Apocynaceae	Anantamul	Climber	0.88	Fruit	GIA: 7 (anti- inflammatory)	Pest	Topical	30.0
Achyranthes aspera	Amaranthaceae	Apang	Shrub	1.5	Root	DC: 5 (Dental pain) PB: 3 DID: 2 (itching) ENT: 2 (ear disorders)	Pest	Toothpowder, Topical	20.0
Pterocarpus marsupium Roxb	Fabaceae	Piyasal	Tree	1.25	Latex, Young twig	ADBT: 5(Blood Sugar Level) GIA: 5 (Diarrhea)	Juice	Oral	27.5
Phyllanthus emblica	Phyllanthaceae	Amloki	Tree	1.38	Fruit	GH: 6(strong antioxidant) GIA: 5 (anti- inflammatory, antiulcer, hepatoprotective)	Raw	Oral	55.0
Terminalia chebula	Combretaceae	Horitoki	Tree	0.88	Fruit, Stem	GH: 3 (Tweet) CSCD: 4(stopping the bleeding)	Raw, Decoction	Oral	42.5

Aegle marmelos	Rutaceae	Bel	Tree	1.25	Fruit, Root	GIA: 3(Constipation) GH: 3(tuberculosis) GUA: 4 (urinary diseases)	Raw, Juice	Oral	42.5
Ichnocarpus frutescens R.Br	Apocynaceae	Shyamlota	Climber	1.38	Flower	RSD: 4(asthma) FEV: 3 GIA: 4 (cholera)	Decoction	Oral	32.5
Limmonia accidissima L	Rutaceae	Koitbel	Tree	1.25	Fruit	GIA: 3(belly pain in children) DC: 3(Bleeding in gum) CSCD: 4(purifies blood)	Raw	Oral	22.5
Anogeissus latifolia	Combretaceae	Dha	Tree	0.88	Seed, Leaf	GH: 4(wounds and localized swelling) GIA: 3(diarrhea, bleeding piles)	Powder, Juice	Oral	47.5
Aristolochia indica L.	Aristolochiaceae	Ishwarmul	Shrub	1.13	Stem, Fruit	GH: 5(stimulant and tonic) PB: 4(Snake bites)	Juice, Powder	Oral	35.0
Kalancoe pinnata	Crassulaceae	Amarshankar Patharkuchi	Shrub	0.88	Leaf, Stem	PK: 4 PB: 3 (insect bites)	Pest	Topical	17.5
Hygrophila auriculata (Schum.) Heyne	Acanthaceae	Kulekhara	Herb	1.38	Whole plant	CSCD: 6 (tonic) GUA: 2 (urinary calculi)	Decoction	Oral	32.5

						RSD: 3 (anuria and			
Strychnos nux- vomica L	Loganiaceae	Kuchila	Tree	0.63	Fruit	GIA: 5 (Stimulent)	Juice	Oral	32.5
Terminalia arjuna	Combretaceae	Arjun	Tree	1.23	Root, Bark	GUA: 6 (cleanse urinary infections like UTI) GH: 3 (balancing effect on the kapha and pitta doshas)	Juice	Oral	57.5
Cascabela thevetia	Apocynaceae	Kolke	Tree	0.63	Flower	CSCD: 5 (rise in the cardiac output)	Decoction	Oral	32.5
Gmelina arborea	Verbenaceae	Gamar	Tree	0.5	Leaf	CSCD: 4 (bleeding disorders and to improve blood production)	juice	Oral	42.5
Eichhornia crassipes	Pontederiaceae	Kochuripana	Herb	0.75	Flower	DID: 6 (medicating the skin)	Pest		22.5
Dalbergia sissoo	Legumes	Sishu	Tree	0.5	Bark	STIs: 4 (Sexual impotency in men	Juice	Oral	40.0
Lagerstroemia speciosa	Lythraceae	Jarul	Tree	0.75	Leaf; Flower	GIA: 4 (purgative) ADBT: 2 (diabetes)	Jiuce, Powder	Oral	45.5
Clerodendrum infortunatum	Lamiaceae	Ghetu	Shrub	0.63	Flower, Leaf	RSD: 3(asthma, cough) DID: 2 (Skin disease)	Decoction, Paste	Oral, Topical	17.0
Croton bonplandianus	Euphorbiaceae	Bontulshi	Shrub	0.75	Leaf	DID: 6 (skin diseases)	Paste	Topical	55.0
Withania somnifera	Nightshade	Aswagandha	Shrub	0.88	Leaf,	GH: 5 (Piles) CA: 2 (burns and	Juice,	Oral,	35.0

					Flower	wounds)	Powder	Topical	
Abroma augusta (L)Lt	Sterculiaceae	Ulotkombal	Shrub	0.88	Seed	ED: 7 (hormones level and regulates menstruation)	Juice	Oral	15.0
Uraria crinita	Fabaceae	Shankarjota	Shrub	0.75	Bark	HC: 6 (to rid the hair)	Paste	Topical	47.5
Tridax procumbens	Daisy	Bishallakarani	Herb	0.88	Leaf	PK: 7 (Open woonds)	Pest	Topical	47.5
Schleichera oleosa	Sapindaceae	Kusum	Tree	1.0	Leaf, Bark	DID: 4 (Skin disease) GH: 4 (Malaria)	Pest, Decoction	Topical, Oral	65.0
Combretum indicum	Combretaceae	Madhabilota	Climber	1.23	Leaf, Whole Plant	DID: 5 (Skin Problem) RSD: 4 (Asthma)	Pest, decoction	Topical, Oral	47.5
Datura stramonium	Nightshade	Dhutra	Shrub	0.63	Bark	HC: 5 (hair fall)	Paste	Topical	25.0
Paederia foetida Linn.	Rubiaceae	Gandal	Herb	1.0	Leaf,	GIA: 5 (DIARRHEA) PK: 3 (Pain killer)	Decoction	Oral	45.0
Mimusops elengi Linn.	Sapotaceae	Bokul	Tree	0.63	Fruit	GH: 5 (headache and sinusitis.)	Raw	Oral	17.5

Many autochthonal communities elsewhere conjointly used principally leaves for the preparation of seasoning medicines. The explanation why leaves were used principally is that they're collected terribly simply than underground components, flowers and fruits etc. and in scientific purpose of read leaves are active in chemical action and production of metabolites.

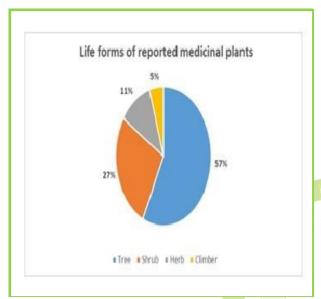


Figure 2: Reported Medicinal Plants

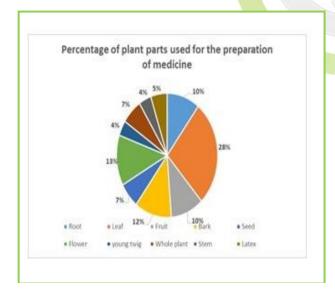


Figure 3: Percentage of plant parts used for the preparation of medicine

Method of Preparation and Mode of Administration of Plants

The preparation and utilization of plant elements were classified into 5 classes (Fig. 4).

Of these, most typically used methodology of preparation was paste (30%) followed by powder (11%), juice (28%), raw (12%, taken as and natural object ready as pickles and boiling (19%). Preparation of paste for the treatment of ailments may be a common apply among alternative social group communities in India and other elements of the globe. The paste was ready by grinding the contemporary or dried plant elements with oil or water. The powder was ready by the of shade dried plant elements. grinding The boiling was obtained by boiling the plant elements in water till the amount of the water reduced to minimum or needed amount. The inhalation was done by the burning of plant elements and inhaled the smoke through nose or mouth.

Internal uses (67%) were predominating over external or topical uses (30%) and Tooth powder uses (3%). For topical use, the foremost necessary ways used were direct application of paste or medicated oil (with oil) and principally addressed diseases like skin disorders, wounds, heel cracks, poison bites, rheumatism, body pain and headache. Most of the medicines got orally that is in agreement with another studies conducted elsewhere. (Fig. 5)

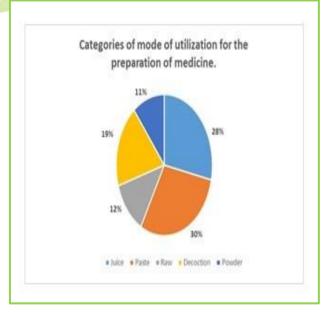


Figure 4: Categories of Mode of Utilization for the Preparation of Medicine

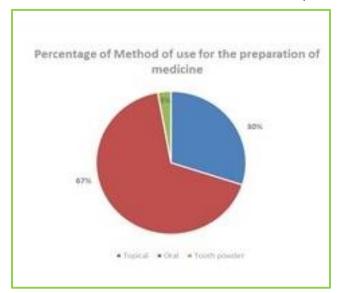


Figure 5: Percentage of Method of Use for the Preparation of Medicine

Plant Use Values

The most commonly used species was *Terminalia bellirica*, with 14 use-reports by 8 informants, giving the highest use value of 1.75 is attributed to its use in the treatment of various diseases and it is well recognized by all the informants.

The plant with very low use value was *Phoenix dactylifera* which is reported by only 2 informants with a UV of 0.25, but the informant is regularly using this plant having Anti-oxidant activity. Similar to our study, tender leaves of the plant is used to cure irregular menstruation and sterility in women by the Indian. While tribal people in Cuba (Cano and Volpato, 2004) and Ghana (Asase et al., 2010) were using the plant for the treatment of malaria and liver pain respectively. In general, scarce availability of the plants in the study area leads them to low UV as in the case of Ramgarh Forest.

Informant Consensus Factor

Generally Fic of native data for sickness treatment trusted the supply of the plant species within the study space (Rajakumar and Shivanna, 2009). So as to use the informant agreement issue (Fic), we tend to classify the sicknesses into broad sickness classes. The Fic values in our study are ranged from 0.73 to 1.00.

The employment classes with quite forty usewere dermatologic infections/diseases reports use-reports, eleven (43 species), gastrodiseases intestinal (67 usereports, fourteen species) and skeleto-muscular system disorders (2 use-reports, one species) (Fig. 6). In the gift study, Skeleto muscular disorder had the best Fic of 1.00 and it is in agreement with the previous studies among the neighboring autochthonic communities

in province, India. The least agreement between the informants was ascertained within the skeleto-muscular system disorders with a Fic of 1.00 followed by toxic bites with a Fic of 0.80, genito-urinary ailments 0.67 and ear, nose, throat issues with a Fic of 0.86 (Table 2). Our findings showed that these classes had high range of use-reports among the tribals of Ramgarh Forest with moderate Fic value.

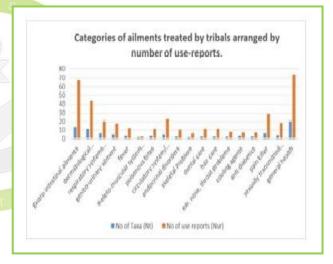


Figure 6: Categories of ailments treated by tribals arranged by number of use-reports

Table 2: Informant consensus factor for commonly used medicinal plants

Ailment category	Number of taxa (Nt)	Number of use- reports (Nur)	Informant consensus factor (Fic)
Gastro- intestinal ailments	14	67	0.80
Dermatological infections/	11	43	0.76

			otanicai Survey of
diseases			
Respiratory systems diseases	6	21	0.75
Genito-urinary ailment	5	18	0.76
Fever	3	12	0.82
Skeleto- muscular system disorders	1	2	1.0
Poisonous bites	3	11	0.80
Circulatory system/ cardiovascular diseases	5	23	0.82
Endocrinal disorders	2	10	0.89
Skeletal Problem	1	6	1.00
Dental care	2	11	0.90
Hair care	2	11	0.90
Ear, nose, throat problems	2	8	0.86
Cooling agents	3	7	0.67
Anti-diabetics	2	7	0.83
Pain killer	6	29	0.82
Sexually transmitted diseases	4	19	0.83
General health	21	74	0.73
TOTAL	93	379	

CONCLUSION

The present study unconcealed that ancient medicines were still in common use by the social group communities and correct information of the plants and their medicative properties were controlled by solely the tribal people.

Thence necessity for elaborated investigation of ethnobotanical information control by every soc ial group community is needed before such valuable information vanishes. Thus, our work would be helpful in preventing the loss of ethnomedicinal traditions of Ramgarh social group communities. The plants with highest use the study could indicate values within doable prevalence of valuable phytochemical compounds and it needs a quest for potential new medication to treat numerous ailments. The efficaciousness and safety of the reportable ethnomedicinal plants has to be evaluated for phytochemical and medicine studies particularly the plants with high informant accord issue, use value, and relative importance oughttorun priority to hold out bioassay and toxicity studies.

ACKNOWLEDGEMENTS

The authors are very much thankful to **Dr. Subhasis Maity**, Director, NSHM Knowledge Campus, Kolkata – Group of Institution for providing the necessary facilities and encouragement to complete this project. Authors are also grateful to all the resource person who have provided the necessary data in progress of this work. Many thanks to Ramgarh tribal people for providing the information about medicinal importance of the plants available in the same forest.

REFERENCES

1. Ali-Shtayeh, M. S., Yaniv, Z., & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of Ethnopharma-cology, 73(1-2), 221-232.

https://doi.org/10.1016/S0378-8741(00)00316-0 2. Andrade-Cetto, A. (2009). Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of ethnopharmacology, 122(1), 163-171.

https://doi.org/10.1016/j.jep.2008.12.008

PMid:19146936

3. Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105-121.

https://doi.org/10.1111/j.1095-8339.2009.00996.x

4. Asase, A., Akwetey, G. A., & Achel, D. G. (2010). Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. Journal of ethnopharmacology, 129(3), 367-376.

https://doi.org/10.1016/j.jep.2010.04.001

PMid:20382213

- 5. Ayyanar, M., & Ignacimuthu, S. (2009). Herbal medicines for wound healing: ethnobotanical and scientific evidence from south Indian traditional medicine. International Journal of Natural Products in Applied Research, 2, 29-42.
- 6. Ayyanar, M., & Ignacimuthu, S. (2009). Some less known ethnomedicinal plants of Tirunelveli hills, Tamil Nadu. Journal of economic and taxonomic botany, 33(Supplement), 73-76.
- 7. Ayyanar, M., & Ignacimuthu, S. (2010). Plants used for non-medicinal purposes by the tribal people in Kalakad Mundanthurai Tiger Reserve, Southern India. Indian J Traditional Knowledge, 9, 515–518.

8. Bennett, B. C., & Prance, G. T. (2000). Introduced plants in the indigenous pharmacopoeia of Northern South America. Economic Botany, 54(1), 90-102.

https://doi.org/10.1007/BF02866603

9. Cakilcioglu, U., & Turkoglu, I. (2010). An ethnobotanical survey of medicinal plants in Sivrice (Elazığ-Turkey). Journal of Ethnopharmacology, 132(1), 165-175.

https://doi.org/10.1016/j.jep.2010.08.017

PMid:20713142

10. Calixto, J. B. (2005). Twenty-five years of research on medicinal plants in Latin America: a personal view. Journal of ethnopharmacology, 100(1-2), 131-134.

https://doi.org/10.1016/j.jep.2005.06.004

PMid:16006081

11. Cano, J. H., & Volpato, G. (2004). Herbal mixtures in the traditional medicine of Eastern Cuba. Journal of Ethnopharmacology, 90(2-3), 293-316.

https://doi.org/10.1016/j.jep.2003.10.012

PMid:15013195

12. Claeson, U. P., Malmfors, T., Wikman, G., & Bruhn, J. G. (2000). Adhatoda vasica: a critical review of ethnopharmacological and toxicological data. Journal of Ethnopharmacology, 72(1-2), 1-20.

https://doi.org/10.1016/S0378-8741(00)00225-7

13. Ernst, E. (2005). The efficacy of herbal medicine—an overview. Fundamental & clinical pharmacology, 19(4), 405-409.

https://doi.org/10.1111/j.1472-8206.2005.00335.x

PMid:16011726

HOW TO CITE THIS ARTICLE

Sankhadip, B., & Chakraborty, S. (2018). Ethnobotanical Survey of Medicinal Plants of Ramgarh Forest. *International Journal for Pharmaceutical Research Scholars*, 7(3); 41-57. http://dx.doi.org/10.31638/IJPRS.V7.I3.00049

THIS PAGE IS INTENTIONALLY LEFT BLANK.